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METHODS
A literature search was conducted in the PubMed database on October 09, 2022, at 15:50 CDT. Following the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines, MeSH terms include “Medical informatics”, “public health informatics”, “privacy”, 
and “confidentiality”; and Text words include “federated learning” and “distributed learning”. Moreover, the query of the search is shown below.

• ((((Medical Informatics[MeSH Terms]) OR (public health informatics[MeSH Terms])) AND (privacy[MeSH Terms]) OR Confidentiality[MeSH
Terms]) AND ((federated learning[Text Word])) OR (distributed learning[Text Word]))

Since the study is interested to discover and summarize the cutting-edge methods published in recent years, papers were excluded if published 
more than five years from October 09, 2022. Thus, 85 papers were excluded. I also excluded the articles that do not have innovative algorithms 
and outdated methodologies, and 74 and 12 papers were excluded, respectively. Moreover, clinical trials, review papers, non-healthcare-related 
research, and papers in non-English languages are excluded, with a total number of 24. As a result, 20 papers were included and reviewed after 
the filtration. The PRISMA diagram is shown in Figure 1.

A table was created for comparison in the reviewed papers, demonstrating the details of federated learning methods.
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The following table shows the selected methods in the literature review. This study summarized 
the FL type, FL protection layer, implementation domain, and the strength & weaknesses of each 
method.
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(Islam et al., 
2021) Decentralized None Clinical data

It is a decentralized 
federated learning network, 
which is considered more 
secure than centralized 
federated learning.

It does not include a 
protection layer when 
communicating the model 
information

(Balachandar 
et al., 2020) Centralized None Medical 

imaging data

Adopted Cyclical weight 
transfer (CWT) to increase 
performance

The model does not solve 
the heterogeneous problem

(Kumaresan 
et al., 2022) Centralized None COVID-19

Developed a personalized 
federated multitask learning 
model based on the SEIR 
model

The method did not adopt a 
protection layer when 
training the model

(Ngo et al., 
2022) Blockchain Hash-

encrypted
Cerebellar 
dysfunction

Adopted blockchained FL 
to validate the raw data in 
the FL training net, which 
can protect the model from 
attacks

Blockchain technique has 
lower efficiency in 
communication

(Z. Li et al., 
2019) Centralized Differentia

l privacy EHR data

Adopted differential 
privacy to safeguard the 
intermediate model 
information during the 
training

Differential privacy will 
sacrifice the accuracy of the 
prediction model

(Linardos et 
al., 2022) Centralized None Medical 

imaging data

Developed a federated 3D-
CNN network with a pre-
trained mechanism

The method did not adopt a 
protection layer when 
training the model

Figure 1. PRISMA diagram for scientific review
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RESULT
More and more federated learning
methods were adopted in healthcare
informatics research. However, many
still needed to apply a protection layer
when transmitting model information.
We are expected to see further research
fixing this vulnerability.
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